УДК 59:597(571.621)

ИХТИОЛОГИЧЕСКОЕ РАЗНООБРАЗИЕ ПОЙМЕННЫХ ВОДОЕМОВ СРЕДНЕАМУРСКОЙ НИЗМЕННОСТИ (НА ПРИМЕРЕ ПОЙМЫ РЕК АМУР, ЗАБЕЛОВКА, УРМИ, ТУНГУСКА)

В.Н. Бурик

Институт комплексного анализа региональных проблем ДВО РАН, ул. Шолом-Алейхема 4, г. Биробиджан, 679016, e-mail: vburik2007@rambler.ru

В статье представлены данные сравнительного анализа биоразнообразия ихтиофауны двух участков бассейна реки Амур, различающихся степенью антропогенной нагрузки. Выявлены количественные и качественные различия, характеризующие биоразнообразие ихтиофауны бассейна реки Забеловка и пойменных водоёмов рек Урми и Тунгуска. Данные являются новыми для региона и приводятся впервые.

Ключевые слова: рыбы, вид, река, представленность, общность, бассейн, биоразнообразие.

Биоразнообразие является важной качественной характеристикой биотопов, биогеоценозов, территориальной экосистемы в целом. Зависимость биоразнообразия как от природных средовых, так и от антропогенных факторов очевидна. В ходе изучения ихтиологического разнообразия участков бассейна среднего Амура с различной степенью антропогенной нагрузки нами проводились исследования пойменных водоемов Среднеамурской низменности в бассейнах рек Забеловка и Тунгуска (рис. 1). Забеловка является левым притоком р. Амур. Истоком служат озера в урочище Падь Большая. На всем протяжении (около 30 км) р. Забеловка имеет равнинный характер течения, скорость в большую воду – 0,1– 0,2 м/с. В бассейне реки Забеловка с 1999 г. существует заказник «Забеловский» (с 2011 г. – кластер заповедника «Бастак»), где проводятся ежегодные наблюдения за ихтиофауной [2]. На данной территории расположена система рек, озер и проток, соединяющихся с основным руслом Амура. Наиболее крупный водоем бассейна -

Puc. 1. Места контрольных ловов в районе исследований

озеро Забеловское, зарастающий слабопроточный водоем с илистыми донными грунтами и значительными колебаниями уровня воды. Средняя площадь зеркала — 4,28 км² [2]. Водоемы бассейна являются постоянным местом нагула и нереста амурских рыб [3].

Река Тунгуска – крупный левый приток р. Амур, один из двух ее составляющих истоков – р. Урми. Урми является многоводной таежной рекой полугорного типа, средняя скорость течения 0,7-1,0 м/сек, температура воды летом не выше 18°C. Глубина по фарватеру от 3-х до 8-ми м [4]. Основная масса рыб бассейна р. Тунгуска в теплый период поднимается на нерест и нагул в систему придаточных водоемов, осенью идет обратная миграция рыб, сбивание в более крупные стаи для зимовки в зимовальных ямах русла р. Амур, низовьев рр. Урми и Тунгуски [4]. Придаточными водоемами нижнего течения реки Урми являются старичные заливы и протоки с медленным течением (зал. Никифоровский, пр. Ольгохта и др.). Глубина до трех метров, вода в теплый период прогревается до 25°C и выше, что способствует обильному развитию водной растительности и созданию условий для нереста и нагула значительного числа видов рыб. Наиболее крупный придаточный водоем поймы реки Тунгуска – проточное старичное озеро Хаты-Талга.

Пойменные водоемы двух исследованных участков—сильно эвтрофированные заливы, проточные озера, медленно текущие протоки. Река Забеловка в своем основном русле также значительно эвтрофирована и имеет незначительную скорость течения. Рассмотренные водоемы являются постоянными местами нереста и нагула значительного количества видов рыб, в основном—представителей отряда Cypriniformes (Карпообразные). В бассейнах той и другой реки ихтиологические пробы брались как в заливах и проточных озерах (зал. Никифоровский, зал. Старица, оз. Хаты-Талга, оз. Забеловское, оз. Лиман), так и на медленно текущих участках рек и проток (р. Забеловка, пр. Ольгохта, пр. Чертовая, пр. Крестовая). Антропогенная нагрузка на популяции рыб двух изученных бассейнов различна, поскольку водоемы

поймы р. Тунгуска и ее притоков в значительной степени испытывают пресс любительского рыболовства, находясь в непосредственной близости от трассы Биробиджан — Хабаровск. Бассейн р. Забеловка труднодоступен, кроме того, на большей его части расположен кластерный участок заповедника «Бастак», на который более 11 лет распространялся охранный режим заказника.

Особенности сбора данных и анализа, материалы и методы

Методами работы являлись полевые маршрутные и стационарные исследования, ихтиологические контрольные ловы, метод непосредственного наблюдения в природе, биометрические измерения, обработка и использование литературных данных, ведомственных материалов. Производились статистическая, компьютерная обработка и анализ полевых материалов.

В бассейне реки Забеловка исследования проводились в биотопах низовий равнинных рек, проток, приустьевых озер. С 2000 по 2012 гг. наблюдения за ихтиофауной велись на участках амурской протоки Крестовая, в оз. Забеловское, в пр. Чертова и р. Забеловка. Дополнительно в данных водоемах проводились замеры уровня воды. В бассейне р. Тунгуска с 2001 по 2012 гг. ихтиологические наблюдения в разное время проводились в пойменных водоемах р. Урми (зал. Никифоровский, пр. Ольгохта), в оз. Хаты-Талга. За период наблюдений были проведены серии контрольных ловов, которые производились ставными сетями длиной от 20 до 100 м с ячеей 20, 30, 40, 45, 50, 60 мм на участках водоемов, различающихся скоростью течения, глубиной, прибрежной и водной растительностью и другими экологическими факторами. Экспозиция выставления сетей составляла от 2-х до 24-х часов. Дополнительно применялись крючковые орудия лова, проводилось взятие проб ихтиопланктона и ихтиобентоса подъемником и марлевой рамкой с жестким каркасом.

В многоводный период (2001—2005 гг.) индекс биоразнообразия (индекс Шеннона) определялся для июня—июля 2004 г. при уровне воды в оз. Забеловское — 1,5 м, пр. Крестовая, Чертовая (р. Амур) — 1,5—2 м, зал. Никифоровский (р. Урми) — 2 м, пр. Ольгохта (р. Урми) — 2—2,5 м. В маловодный период (2006—2009 гг.) индекс Шеннона определялся для июня—июля 2007 г. при уровне воды в оз. Забеловское — 0,2—0,4 м, пр. Крестовая, Чертовая (р. Амур) — 0,5—0,7 м, зал. Никифоровский (р. Урми) — 1 м, пр. Ольгохта (р. Урми) — 1—1,5 м. Определение плотности популяций рыб приведено для июня—июля 2008 г. для оз. Лиман и зал. Никифоровский (р. Урми) при одинаковом уровне воды в данных водоемах, равном 1—1,5 м.

Ихтиологические сборы проводились по стандартным методикам [12]. Для видового описания использовались определитель и каталоги круглоротых и рыб России и бассейна р. Амур [1, 5, 10].

Результаты исследования

Видовой состав ихтиофауны водоемов бассейна р. Забеловка по нашим наблюдениям и опросным данным включает 46 видов рыб, представителей 34 родов, 11 семейств, 6 отрядов [3], что составляет около 36 % ви-

дового состава амурской ихтиофауны [10].

КЛАСС OSTEICHTHYES-КОСТНЫЕ РЫБЫ

Отряд Salmoniformes (Лососеобразные)

Семейство *Salmonidae* (Лососевые) — 1 род, 1 вид: *Oncorhynchus keta* (Walbaum, 1792) — кета.

Семейство *Coregonidae* (Сиговые) – 1 род, 1 вид: *Coregonus ussuriensis* (Berg, 1906) – сиг уссурийский (амурский).

Отряд Esociformes (Щукообразные)

Семейство *Esocidae* (Щуковые) – 1 род, 1 вид: *Esox reichertii* (Dybowski, 1869) – амурская щука.

Отряд Cypriniformes (Карпообразные)

Семейство *Cyprinidae* (Карповые) – 23 рода, 29 видов: Leuciscus waleckii (Dybowski, 1869) – амурский язь (чебак), Ctenopharyngodon idella (Valenciennes) – белый amyp, Phoxinus percnurus mantschuricus (Berg, 1907) – маньчжурский озерный гольян, Phoxinus czekanowskii (Dibouwski, 1869) – гольян Чекановского, Phoxinus lagowskii (Dibouwski, 1869) – гольян Лаговского, Phoxinus oxycephalus (Sauvage, Dabry de Thiersant, 1874) - китайский гольян, Pseudaspius leptocephalus (Pallas, 1776) амурский плоскоголовый жерех, Hemibarbus maculatus (Bleeker, 1871) – пестрый конь, Hemibarbus labeo (Pallas, 1776) – конь-губарь, Abbottina rivularis (Basilewcky, 1855) – речная абботина, амурский лжепескарь, Gnathopogon strigatus (Regan, 1908) – маньчжурский (чебаковидный) пескарь, Pseudorasbora parva (Temminck et Schlegel, 1846) - амурский чебачек, Saurogobio dabryi (Bleeker, 1871) ящерный (длиннохвостый) пескарь, Squalidus chankaensis (Dibouwski, 1872) - ханкинский (уссурийский) пескарь, Xenocypris agrentea Basilewsky (macrolepis Bleeker) – амурский подуст-чернобрюшка, Parabramus pekinensis (Basilewcky) - белый амурский лещ, Chanodichthys erythropterus (Basilewcky) – верхогляд, Chanodichthys (Erythroculter) mongolicus (Basilewcky) монгольский краснопер, Culter alburnus (Basilewcky, 1855) – уклей, Hemiculter lucidus (Dibouwski, 1872) – востробрюшка обыкновенная (уссурийская), Hemiculter leucisculus (Basilewcky, 1855) - востробрюшка корейская, Elopichthys bambusa (Richardson, 1845) - желтощек, Opsariichthys bidens – китайская трегубка, Rhodeus amurensis (Vronsky, 1967) - амурский горчак, Acanthorhodeus asmussii (Dybowski, 1872) – колючий горчак, Carassius gibelio (Bloch, 1782) – карась серебряный, Cuprinus carpio haemotopterus (Temminck et Schlegel, 1846) - амурский сазан, Hypophthalmichthys molitrix (Valenciennes, 1844) – толстолоб (белый толстолобик), Aristichthys nobilis (Richardson, 1845) – пестрый толстолобик.

Семейство *Cobitidae* (Вьюновые) — 2 рода, 4 вида: *Misgurnus buphoensis* (Кіт, Рак, 1995) — корейский вьюн, *Misgurnus mohoity* (Cantor, 1842) — змеевидный вьюн, *Cobitis melanoleuca* (Nichols, 1925) — сибирская щиповка, *Cobitis lutheri* (Rendahl, 1935) — щиповка Лютера.

Отряд Siluriformes (Сомообразные)

Семейство *Bagridae* (Косатковые) – 2 рода, 4 вида: *Pelteobagrus fulvidraco* (Richardson, 1846) – китайская косатка-скрипун, *Pelteobagrus mica* (Gromov, 1970) – косатка-крошка, *Pelteobagrus brashnikovi* (Berg, 1907) –

косатка Бражникова, *Pseudobagrus ussuriensis* (Dibowski, 1872) – уссурийская косатка, косатка-плеть.

Семейство *Siluridae* (Сомовые) – 1 род, 2 вида: *Silurus asotus* (Linnaeus, 1758) – амурский сом, *Silurus soldatovi* (Nikolsky et Soin, 1948) – сом Солдатова.

Отряд Scorpaeniformes (Скорпенообразные)

Семейство *Cottidae* (Керчаковые, или Рогатковые) – 1 род, 1 вид: *Mesocottus haitej* (Dibowski, 1869) – амурская широколобка.

Отряд Perciformes (Окунеобразные)

Семейство *Percichthyidae* (Перцихтовые) – 1 род, 1 вид: *Siniperca chuatsi* (Basilewcky, 1855) – ayxa.

Семейство *Odontobutidae* (Головешковые) – 1 род, 1 вид: *Perccottus glenii* (Dybowski, 1877) – ротан-головешка.

Семейство *Channidae* (Змееголовые) — 1 род, 1 вид: *Channa argus* (Cantor, 1842) — змееголов.

В оз. Забеловское и других водоемах поймы р. Забеловка достоверно подтверждено обитание трех редких видов рыб, внесенных в Красные книги РФ и ЕАО: желтощека, сома Солдатова и аухи [7]. В большинстве водоемов амурской поймы и поймы р. Забеловка в связи с их мелководностью рыба не зимует, с апреля рыба мигрирует на нерест и нагул из р. Амур, осенью скатывается обратно в амурское русло [8, 9].

Видовой состав ихтиофауны, населяющий в летний период пойменные водоемы низовий рр. Урми и Тунгуска, по нашим наблюдениям и опросным данным включает 35 видов рыб, представителей 29 родов, девяти семейств, пяти отрядов.

Отряд Лососеобразные (Лососеобразные)

Семейство *Coregonidae* (Сиговые) – 1 род, 1 вид: *Coregonus ussuriensis* (Berg, 1906) – сиг уссурийский (амурский).

Отряд Esoxiformes (Щукообразные)

Семейство *Esocidae* (Щуковые) – 1 род, 1 вид: *Esox reichertii* (Dybowski, 1869) – амурская щука.

Отряд Cypriniformes (Карпообразные)

Семейство *Cyprinidae* (Карповые) – 19 родов, 22 вида: Cuprinus carpio haemotopterus (Temminck et Schlegel, 1846) – амурский сазан, Carassius gibelio (Bloch, 1782) – карась серебряный, Acanthorhodeus asmussii (Dybowski, 1872) – колючий горчак, Rhodeus sericeus (Pallas, 1776) – обыкновенный амурский горчак, Leuciscus waleckii (Dybowski, 1869) – амурский язь (чебак), Opsariichthys bidens (Gunther, 1873) - китайская трегубка, Chanodichthys erythropterus (Basilewcky, 1855) – верхогляд, Culter alburnus (Basilewcky, 1855) – уклей, Hemiculter leucisculus (Basilewcky, 1855) - корейская востробрюшка, Hemiculter lucidus (Dibouwski, 1872) – уссурийская Hypophthalmichthys востробрюшка, (Valenciennes, 1844) – белый толстолобик, Xenocypris macrolepis (Bleeker, 1871) – амурский подуст-чернобрюшка, Phoxinus percnurus mantschuricus (Berg, 1907) - маньчжурский озерный гольян, Phoxinus lagowskii (Dibouwski, 1869) - гольян Лаговского, Phoxinus oxycephalus (Sauvage, Dabry de Thiersant, 1874) - китайский гольян, Hemibarbus maculatus (Bleeker, 1871) пятнистый конь, Hemibarbus labeo (Pallas, 1776) – коньгубарь, Gobio cynocephalus (Dibouwski, 1869) – амурский обыкновенный пескарь, Saurogobio dabryi (Bleeker, 1871) – ящерный (длиннохвостый) пескарь, Sarcocheilichthys sinensis (Bleeker, 1871) – пескарь-лень, Pseudorasbora parva (Temminck et Schlegel, 1846) – амурский чебачек, Squalidus chankaensis (Dibouwski, 1872) – ханкинский (уссурийский) пескарь, Pseudaspius leptocephalus (Pallas, 1776) – амурский плоскоголовый жерех.

Семейство *Cobitidae* (Вьюновые) — 2 рода, 3 вида: *Misgurnus buphoensis* (Кіт, Рак, 1995) — корейский вьюн, *Cobitis melanoleuca* (Nichols, 1925) — сибирская щиповка, *Cobitis lutheri* (Rendahl, 1935) — щиповка Лютера.

Отряд Siluriformes (Сомообразные)

Семейство *Bagridae* (Косатковые) — 2 рода, 3 вида: *Pelteobagrus fulvidraco* (Richardson, 1846) — китайская косатка-скрипун, *Pelteobagrus mica* (Gromov, 1970) — косатка-крошка, *Pseudobagrus ussuriensis* (Dibowski, 1872) — уссурийская косатка, косатка-плеть.

Семейство *Siluridae* (Сомовые) – 1 род, 2 вида: *Silurus asotus* (Linnaeus, 1758) – амурский сом, *Silurus soldatovi* (Nikolsky et Soin, 1948) – сом Солдатова.

Отряд Perciformes (Окунеобразные)

Семейство *Percichthyidae* (Перцихтовые) – 1 род, 1 вид: *Siniperca chuatsi* (Basilewcky, 1855) – ayxa.

Семейство *Odontobutidae* (Головешковые) – 1 род, 1 вид: *Perccottus glenii* (Dybowski, 1877) – ротан-головешка.

Семейство *Channidae* (Змееголовые) – 1 род, 1 вид: *Channa argus* (Cantor, 1842) – змееголов.

Как и в бассейне р. Забеловка, на зимовку в пойменных водоемах бассейна р. Тунгуска остается незначительная часть рыбьего стада, большинство рыб мигрирует в русла рр. Урми, Тунгуска, Амур.

Для выявления степени сходства видового состава ихтиофауны пойменных водоемов бассейна р. Забеловка и водоемов поймы рр. Тунгуска и Урми мы использовали формулу общности Жаккара [11]:

K=Cx100/(A+B)-C

где A – число видов рыб в ихтиофауне первого бассейна (в нашем случае – р. Забеловка), 46 видов; B – число видов в ихтиофауне другого сравниваемого бассейна, 35 видов; C – число видов, общих для обоих бассейнов, 33 вида; K – коэффициент общности (индекс Жаккара), выражаемый в процентах. Чем выше коэффициент общности, тем выше видовое сходство двух сравниваемых сообществ.

K=33x100/(46+35)-33

Для двух рассматриваемых ихтиосообществ коэффициент видовой общности K = 68,75 %.

При высокой видовой общности разнообразие ихтиофауны пойменных водоемов бассейна р. Тунгуска, по нашим данным, несколько ниже, чем бассейна р. Забеловка. Такая ситуация связана не столько со спецификой биотопов и приуроченных к ним ихтиоценозам (биотопы пойменных водоемов двух бассейнов схожи), сколько с плотностью рыбного населения (численностью на $100 \, \text{м}^2$) – одной из основных количественных характеристик [6].

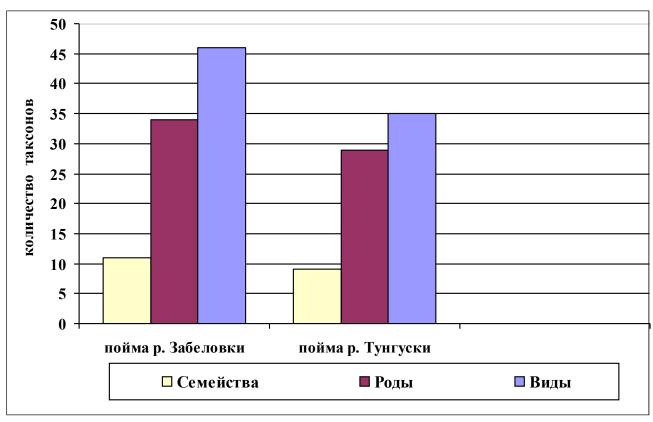


Рис. 2. Таксономический состав ихтиофауны бассейнов рек Забеловка и Урми

Наше предположение подтверждается результатами сетных контрольных ловов. Например, в июне-июле 2008 г. в биотопически сходных водоемах двух бассейнов проточном озере Лиман (бассейн р. Забеловка) и заливе Никифоровский (р. Урми, бассейн р. Тунгуска) при выставлении среднеячеистых сетей (40-45 мм) со временем лова 12 ч. была отмечена плотность рыб 46,4 экз./100 м² и 9,7 экз./100 м² соответственно. Нужно отметить, что применяемый нами в данных ловах размер сетей (40-55 мм) наиболее ходовой у рыбаков, отлавливает рыб средних и крупных размеров. В пойме бассейна р. Тунгуска, более подверженному антропогенному воздействию, частота встречаемости ряда видов значительно ниже, чем в бассейне р. Забеловка (табл. 1). Например, достоверно выявленные по опросным данным в бассейне р. Тунгуска желтощек Elopichthys bambusa и сом Солдатова Silurus soldatovi за весь период наблюдений нам не встречались.

Представленность видов в пойменных водоемах реки Забеловка сильно зависит от режима водности. Так, в маловодный период 2006—2008 гг. видовое разнообразие ихтиофауны оз. Забеловское снизилось почти на треть, восстановившись в последующий многоводный период (табл. 1).

Показателем разнообразия ихтиоценоза оз. Забеловское в многоводный и маловодный периоды может служить индекс Шеннона, часто используемый в гидробиологических и ихтиологических работах [7]:

$$H = -\sum_{i=1}^{n} p_i \log_2 p_i,$$

где p_i – отношение частоты встречаемости каждого і из n видов в выборке к общему количеству рыб в выборке.

Для летних месяцев многоводного 2004 г. индекс Шеннона H=2,204, а для маловодного лета 2007 г. H=1,611. Падение индекса Шеннона указывает, что в маловодный период снижается не только количество видов, но и выравненность представленности видов по частоте [13]. Общие выборки за каждый период одного порядка и сравнимы между собой ($n_1=426, n_2=577$) (табл. 2). За эти же годы имеются количественно сравнимые между собой выборки рыб из пойменных водоемов бассейна р. Тунгуска ($n_1=78, n_2=71$) (табл. 4).

Показатель разнообразия Шеннона для ихтиоценоза пойменных водоемов низовий р. Урми (табл. 3) в 2004 г. составил H = 2,290, а в теплый период 2007 г. H = 2,042. Незначительные колебания индекса Шеннона обусловлены здесь, на наш взгляд, тем, что заливы и медленные протоки р. Урми в маловодный период менее подверглись обмелению, чем, например, оз. Забеловское, потерявшее в эти годы треть площади зеркала.

Практически равный в двух бассейнах показатель качественного разнообразия ихтиофауны в многоводный 2007 г., его зависимость от физических условий (водности) при значительных различиях в плотности ихтиоценозов может свидетельствовать о различной степени антропогенной нагрузки (рыболовство), значимой, в первую очередь, для количественных характеристик ихтиофауны (плотности, соотношения возрастных групп и т.п.) [13].

Встречаемость небольшого числа видов, возможно, лимитируется спецификой биотопов двух бассейнов — различной водностью, степенью аэрации воды, кормо-

Соотношение промысловых видов рыб в оз. Забеловское в контрольных ловах 2001–2008 гг., %

Годы	2001	2002	2003	2004	2005	2006	2007	2008
Виды	-							
Серебряный карась	22,0	9,7	40,6	59,4	57,0	35,2	69,0	75,4
Carassius gibelio	 		· ·					
Язь амурский	3,7	_	_	0,2	4,7	8,8	0,2	10,2
Leuciscus waleckii	+							
Конь пестрый Hemibarbus maculatus	8,9	33,3	17,4	4,0	0,2	25,6	3,0	1,8
Длиннохвостый пескарь	0,6	_						
Saurogobio dabryi	0,0	_	_	_	_	_	_	_
Амурский сазан	38,8	36,1	8,7	12,7	3,2	6,2	15,3	2,2
Cyprinus carpio haemotopterus	30,0	30,1	0,7	12,7	3,2	0,2	13,3	2,2
Толстолоб	15,6	1,4	_	0,9	3,2	_	0,2	0,2
Hypophthalmichthys molitrix	13,0	1,4	_	0,9	3,2	_	0,2	0,2
Белый амурский лещ	0,8	_		0,9	0,4	_	_	
Parabramis pekinensis	0,8	_	_	0,9	0,4	_	_	_
Уклей	1,2	4,2	14,5	1,9	3,9	_	5,0	2,2
Culter alburnus	1,2	4,2	14,3	1,9	3,9	_	3,0	2,2
Верхогляд		_	_	_	0,2	_	_	
Chanodichthys erythropterus		_	_	_	0,2	_	_	_
Монгольский краснопер		_		0,7	0,2	_		
Chanodichthys mongolicus		_	_	0,7	0,2	_	_	_
Востробрюшка корейская		_	7,2	0,2	0,5	_	0,2	5,5
Hemiculter leucisculus		_	7,2	0,2	0,5	_	0,2	3,3
Белый амур	0,6	_	_	2,3	2,0	_	_	
Ctenopharyngodon idella	0,0	_	_	2,3	2,0	_	_	_
Желтощек				0,5	1,1	3,1	0,7	
Elopichthys bambusa	_	_	_	0,3	1,1	3,1	0,7	_
Сом амурский	2,1	8,3	_	9,9	2,1	0,9	1,0	0,5
Silurus asotus	۷,1	0,3		7,9	∠,1	0,9	1,0	0,3
Сом Солдатова	0,2	_		1,4	0,2	2,2	_	
Silurus soldatovi	0,2			1,4	0,2	۷,۷		
Косатка-скрипун			7.2	1 /	21,8	_	2.1	
Pelteobagrus fulvidraco	_	_	7,2	1,4	21,8		2,1	_
Щука амурская	4,8	20	2.0	2.1	0.2	1,3	3,1	0,2
Esox reichertii	4,8	2,8	2,9	2,1	0,2	1,3	3,1	0,2
Змееголов	0.0	5.6		1.2		145		1.0
Channa argus	0,8	5,6	_	1,2	_	14,5	_	1,8
Ayxa		_		0,2	0,9	1,8	0,2	
Siniperca chuatsi		_	_	0,2	0,3	1,0	0,2	_

Таблица 2

Общие число рыб в контрольных ловах в оз. Забеловское в $2001–2008\ {\rm гr.}$

	Годы							
	2001	2002	2003	2004	2005	2006	2007	2008
Количество рыб в ловах за год, экз.	518	72	69	426	559	227	577	549

выми объектами и др. Так, в пойменных водоемах рр. Тунгуска и Урми обычен пескарь-лень Sarcocheilichthys sinensis, не встречающийся в бассейне р. Забеловка. Скорее всего, это связано с большим обилием в бассейне р. Тунгуска двустворчатых моллюсков, необходимых для размножения этой рыбы. В бассейне р. Забеловка обычен амурский лжепескарь Abbottina rivularis, не отмеченный в бассейне р. Тунгуска.

Заключение

Таким образом, в ходе исследований выявлен таксономический состав ихтиоценозов пойменных водоемов двух участков амурского бассейна, различающихся по гидрологическому режиму и степени антропогенной нагрузки. Выявленный видовой состав ихтиофауны бассейна р. Забеловка и прилежащей поймы р. Амур включает 46 видов рыб, представителей 34 родов, 11 семейств, 6 отрядов. В сходных по природным условиям поймен-

Соотношение типичных для поймы бассейна р. Тунгуска рыб в контрольных ловах 2004—2008 гг., %

Годы	2004	2005	2007	2008
Виды	2001	2003	2007	2000
Серебряный карась	18,0	73,0	62,0	36,4
Carassius gibelio	,-	, = , =	,-	23,1
Амурский сазан	_	0,6	_	6,3
Cyprinus carpio haemotopterus		-,-		-,-
Конь пестрый	_	0,6	_	8,7
Hemibarbus maculatus		-,-		-,.
Конь-губарь	1,3	1,3	1,4	0,7
Hemibarbus labeo	,-	,-	,	- , .
Пескарь-лень	_	0,6	_	1,0
Hemibarbus maculatus		- , -		,-
Длиннохвостый пескарь	_	_	_	0,3
Saurogobio dabryi				- ,-
Подуст-чернобрюшка	_	0,6	5,6	27,8
Xenocypris macrolepis		- , -	- ,-	.,-
Язь амурский	37,2	_	9,9	0,4
Leuciscus waleckii	,		,	,
Толстолоб	_	_	_	0,2
Hypophthalmichthys molitrix				,
Уклей	_	_	8,5	3,0
Culter alburnus			,	,
Востробрюшка корейская	5,1	_	1,4	8,5
Hemiculter leucisculus	· ·			ŕ
Горчак колючий	21,8	_	_	0,1
Acanthorhodeus asmussii				,
Трегубка китайская	14,1	18,4	_	0,5
Opsariichthys bidens		,		ŕ
Плоскоголовый жерех	_	_	1,4	0,2
Pseudaspius leptocephalus			,	,
Сом амурский	_	2,5	5,6	1,0
Silurus asotus		,	,	,
Косатка-скрипун	_	1,9	_	2,9
Pelteobagrus fulvidraco		,		,
Щука амурская	2,6	0,6	1,4	0,1
Esox reichertii		<u> </u>	<u> </u>	ĺ .
Сиг амурский	_	_	1,4	_
Coregonus chadary			<u> </u>	
Змееголов	_	_	_	1,3
Channa argus				<u> </u>
Ayxa	_	_	1,4	0,4
Siniperca chuatsi				<u> </u>

Таблица 4

Общее число рыб в контрольных ловах в пойме бассейна р. Тунгуска в 2004–2008 гг.	
To mest of part of the interest of the part of the par	

	Годы					
	2004	2005	2007	2008		
Количество рыб в ловах за год, экз.	78	138	71	954		

ных водоемах низовий рр. Урми и Тунгуска (медленные потоки, заливы, проточные озера) — 35 видов рыб, представителей 29 родов, девяти семейств, пяти отрядов.

В сообществах двух территорий наблюдается значительная видовая общность, коэффициент общности Жаккара здесь равен K = 68,75 %. Разница в представленности видов, родов и семейств рыб, выявленная в ходе

наших исследований в двух бассейнах, объясняется, в первую очередь, более низкой плотностью популяции рыб пойменных водоемов бассейна р. Тунгуска. В некоторые периоды отношение между плотностью рыб здесь и в бассейне р. Забеловка составляет 1:4 и менее. Кроме того, обитание некоторых видов исключительно в одном из бассейнов (например, Sarcocheilichthys sinensis)

лимитируется биоценотической спецификой – кормовыми объектами, режимом аэрации и др.

Такой качественный показатель биоразнообразия, как индекс Шеннона, на двух участках бассейнов в многоводный и благоприятный для рыб период различается незначительно (H=2,204 для бассейна Забеловки и H=2,290 для бассейна Тунгуски в 2004 г.). Отмечается значительное падение индекса Шеннона для бассейна р. Забеловка при обмелении в 2007 г. (H=1,611). На участке бассейна р. Тунгуска, менее подвергшемся обмелению, в 2007 г. падение индекса Шеннона незначительно (H=2,042).

На основании сказанного выше можно сделать предварительный вывод о низких качественных и значительных количественных различиях в биоразнообразии ихтиоценозов бассейна р. Забеловка и пойменных водоемов нижней части бассейна р. Тунгуска. Замеченная нами существенная разница в плотности популяций рыб в двух участках речных бассейнов при сходстве их биоценозов может быть обусловлена как природными факторами (морфология поймы, гидрологический и температурный режимы), так и антропогенной нагрузкой (рыболовство), существенно превышающей в бассейне р. Тунгуска нагрузку на ихтиоценоз в бассейне р. Забеловка.

Работа выполнена при финансовой поддержке грантов: ДВО РАН 12-I-П30-14, РФФИ 12-04-98540-р_восток_а.

ЛИТЕРАТУРА:

- 1. Богуцкая Н.Г., Насека А.М. Каталог бесчелюстных и рыб пресных и солоноватых вод России с номенклатурными и таксономическими комментариями. М.: Товарищество научных изданий КМК, 2004. 389 с.
- Бурик В.Н. Изменение состава ихтиофауны биоценозов реки Забеловка // Региональные проблемы. 2009.
 № 12. С. 46–49.

- Бурик В.Н. Ихтиофауна Еврейской автономной области // Региональные проблемы. 2008. № 10. С. 68–75.
- Бурик В.Н. Особенности распространения амурской ихтиофауны в бассейне реки Урми // Современное состояние водных биоресурсов: мат-лы науч. конф. посв. 70-летию С.М. Коновалова, Владивосток: ТИН-РО-центр, 2008. С. 457–460.
- 5. Веселов Е.А. Определитель пресноводных рыб фауны СССР. М.: Просвещение, 1977. 238 с.
- 6. Зубарев А.Н. Зооценозы малых рек Черноморского побережья Северо-Западного Кавказа в условиях антропогенного воздействия: автореф. дис. ... канд. биол. наук. М., 2009. 24 с.
- Корзун А.С. Население рыб Средне-Иртышского района в пределах Омской области // Электронный научный журнал «Современные проблемы науки и образования»: Биологические науки. 2011. № 4.
- Крыжановский С.Г., Смирнов А.И., Соин С.Г. Материалы по развитию рыб р. Амура // Труды амурской ихтиологической экспедиции 1945–1949 гг. М.: Издво МОИП, 1951. Т. 2. С. 5–222.
- 9. Никольский Г.В. Рыбы бассейна Амура. М.: Наука, 1956. 551 с.
- 10. Новомодный Г.В. Рыбы Амура // http://tinro.khv.ru/amurfishes/amurfishes.htm. 2011.
- 11. Плохинский Н.А. Биометрия. М.: Изд-во МГУ, 1970. 367 с.
- 12. Правдин И.Ф. Руководство по изучению рыб. М.: Пищ. пром., 1966. 165 с.
- 13. Протасов А.А. Биоразнообразие и его оценка. Концептуальная диверсикология. Киев: Изд-во Института гидробиологии НАН Украины, 2002. 105 с.

The data on the comparative analysis of fish fauna biodiversity in two sites of the Amur River basin, with a different degree of anthropogenic load are presented in the paper. The quantitative and qualitative distinctions, characterizing biodiversity of the fish fauna in the river basin of Zabelovka, and flood-lands of the Urmia and Tunguska rivers are revealed. It presentes for the first time that this new regional data is cited.

Key words: fish fauna, species, representation, river basin, flood-lands, biodiversity.