MATHEMATICAL MODEL OF PLANKTON COMMUNITY DYNAMICS WITH THE ARDITI–GINZBURG RESPONSE FUNCTION
Аннотация
The paper studies a two-component model of plankton community with discrete time. To describe the interaction between phytoplankton and zooplankton, we use the Arditi–Ginzburg response function.
Ключевые слова
Литература
Neverova G.P., Zhdanova O.L., Abakumov A.I. Discrete-Time Model of Seasonal Plankton Bloom. Matematicheskaya biologiya i bioinformatika, 2020, vol. 15, no. 2, pp. 235–250. DOI: 10.17537/2020.15.235 (In Russ.).
Tyutyunov Yu.V., Titova L.I., Surkov F.A., Bakaeva E.N. Trophic function of phytophagous rotifers (rotatoria). Experiment and modeling. Zhurnal obshchei biologii, 2010, vol. 71, no. 1, pp. 52–62. (In Russ.).
Chattopadhayay J., Sarkar R.R., Mandal S. Toxin-producing plankton may act as a biological control for planktonic blooms – field study and mathematical modeling. Journal of Theoretical Biology, 2002, vol. 215, no. № 3, pp. 333–344.
Irigoien X., Flynn K.J., Harris R.P. Phytoplankton blooms: a ‘loophole’in microzooplankton grazing impact? Journal of Plankton Research, 2005, vol. 27, no. 4, pp. 313–321.
Leles S.G., VaLEntin J.E.L., FiGuEirEdo G.M. Evaluation of the complexity and performance of marine planktonic trophic models. Anais da Academia Brasileira de Ciências, 2016, vol. 88, pp. 1971–1991.
Medvinsky A.B., Tikhonova I.A., Aliev R.R., Li B.L., Lin Z.S., Malchow H. Patchy environment as a factor of complex plankton dynamics. Physical Review E., 2001, vol. 64, no. 2, 021915.
Scheffer M., Rinaldi S., Kuznetsov Y.A. Effects of fish on plankton dynamics: a theoretical analysis. Canadian Journal of Fisheries and Aquatic Sciences, 2000, vol. 57, no. 6, pp. 1208–1219.
Zhang Z., Rehim M. Global qualitative analysis of a phytoplankton–zooplankton model in the presence of toxicity. International Journal of Dynamics and Control, 2017, vol. 5, no. 3, pp. 799–810.
Ссылки
- Ссылки не определены.