ROLE OF HYDROTHERMAL DYNAMICS FOR THE ORIGIN OF LIFE ON EARTH

V.N. Kompanichenko

Аннотация


In framework of the inversion concept one more required condition for the origin of life has been substantiated: multilevel fluctuations of physic-chemical parameters (in addition to the three accepted: availability of organic matter, aqueous medium, and source of energy). Taking this condition into consideration, hydrothermal systems were preferable medium for the origin of life on early Earth, in comparison with ocean. Hydrothermal environments are characterized by an extremely wide range of temperature, pressure, pH, and concentrations of components gradients. Multilevel fluctuations availability has been corroborated by means of thermodynamic estimations and direct measurements of pressure and temperatureduring the monitoring in some of the Kamchatka peninsula hydrothermal systems. The monitoring database mathematical processing reveals at least three levels of pressure fluctuations: 1) irregular macro fluctuations (with big amplitudes); 2) regular micro oscillations (with smaller amplitudes and periods about 20 minutes); 3) sudden pressure changes and fluctuations with periods lower than 5 minutes. High correlation between pressure, temperature, and concentrations of chemical components is also detected both in hydrothermal systems of  Kamchatka and Slovenia. A lot of data on pressure and temperature dynamics in hydrothermal fluid, obtained by many researchers, can be applicable for investigation of the origin-of-life process.


Ключевые слова


hydrothermal system; origin of life; fluid; thermodynamic estimation; fluctuation; amplitude; period; temperature; pressure; hydrochemistry

Литература


REFERENCE: Kompanichenko V.N. Role of hydrothermal dynamics for the origin of life on Earth. Regional’nye problemy, 2023, vol. 26, no. 4, pp. 52–61. (In Russ.). DOI: 10.31433/2618-9593-2023-26-4-52-61.

Авченко О.В. Основы физико-химического моделирования минеральных систем / О.В. Авченко; К.В. Чудненко; И.А. Александров. М.: Наука; 2009. 229 с.

Авченко О.В.; Чудненко К.В.; Александров И.А.; Худоложкин В.О. Адаптация программного комплекса «Селектор-С» к решению проблем петрогенезиса метаморфических пород // Геохимия. 2011. № 2. С. 149–164.

Кирюхин А.В.; Лесных М.Д.; Поляков А.Ю. Естественный гидродинамический режим Мутновского геотермального резервуара и его связь с сейсмической активностью // Вулканология и Сейсмология. 2002. № 1. С. 51–60.

Компаниченко В.Н. Этапы перехода от доклеточных органических микросистем к первичным сообществам прокариот // Известия РАН. Серия биологическая. 2011. № 5. С. 630–640.

Компаниченко В.Н.; Авченко О.В. Термодинамические расчеты параметров состояния гидротермальной среды для моделирования процесса зарождения биосферы // Региональные проблемы. 2015. Т. 18; № 2. С. 5–13.

Компаниченко В.Н.; Шлюфман К.В. Амплитудно-частотная характеристика колебаний давления пароводяной смеси в Верхне-Мутновской гидротермальной системе // Вулканология и сейсмология. 2013. № 5. С. 51–58. DOI: 10.7868/S0203030613050027.

Чудненко К.В. Термодинамическое моделирование в геохимии: теория; алгоритмы; программное обеспечение; приложения. Новосибирск: Гео; 2010. 287 с.

Baaske P.; Weinert F.M.; Duhr S.; Lemke K.H.; Russell M.J.; Braun D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems // Proceedings of the National Academy of Sciences. 2007. Vol. 104; N 22. P. 9346–9351. DOI: 10.1073/pnas.0609592104.

Brown K.M.; Tryon M.D.; DeShon H.R.; Dorman L.M.; Schwartz S.Y. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone // Earth and Planetary Science Letters. 2005. Vol. 238; N 1–2. P. 189–203.

Budin I.; Szostak J.W. Expanding roles for diverse physical phenomena during the origin of life // Annu Rev Biophys. 2010. Vol. 39. P. 245–263.

Corliss J.B.; Baross J.A.; Hoffman S.E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on the Earth // Oceanological Acta. 1981. N 4. P. 59–69.

Deamer D.W. Combinatorial chemistry in the prebiotic environment // Journal of Biomolecular Structure and Dynamics. 2013. N 31; Suppl. 1. P. 9. DOI: 10.1080/07391102.2013.786323.

Deamer D.W. First Life: Discovering the Connections between Stars; Cells; and How Life Began. Berkeley (California): University of California Press; 2011. 272 p.

Ebeling W. Physik der Evolutionsprozesse / W. Ebeling; A. Engel; R. Feistel. Berlin: Akademie-Verlag; 1990. 371 p.

Feistel R. Physics of Self-Organization and Evolution / R. Feistel; W. Ebeling. Weinheim; Germany: Wiley-VCH Verlag & Co. KGaA; 2011. 576 p.

Haken H. Synergetics. An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics; Chemistry and Biology. Berlin Heidelberg: Springer-Verlag; 1978. 358 p. DOI: 10.1007/978-3-642-96469-5.

Holland T.J.B.; Powell R. An internally consistent thermodynamic data set for phases of petrological interest // Journal of Metamorphic Geology. 1998. Vol. 16; N 3. P. 309–343. DOI: 10.1111/j.1525-1314.1998.00140.x.

Holm N.G.; Andersson E. Hydrothermal simulation experiments as a tool for studies for the origin of life on Earth and other terrestrial planets: a review // Astrobiology. 2005. Vol. 5; N 4. P. 444–460. DOI: 10.1089/ast.2005.5.444.

Knauth L.P.; Lowe D.R. High Archaean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup; South Africa // Geological Society America Bulletin. 2003. Vol. 115; N 5. P. 566–580. DOI: 10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2.

Kompanichenko V.; Kotsyurbenko O. Role of Stress in the Origin of Life // Life. 2022. Vol. 12; N 11. 1930. DOI: 10.3390/life12111930.

Kompanichenko V.N.; Poturay V.A.; Shlufman K.V. Hydrothermal systems of Kamchatka are Models of the Prebiotic Environment // Origin of Life and Evolution of Biospheres. 2015. Vol. 45; N 1–2. P. 93–103. DOI: 10.1007/s11084-015-9429-2.

Kompanichenko V.N. Inversion Concept of the Origin of Life // Origins of Life and Evolution of Biospheres. 2012. Vol. 42. P. 153–178.

Kompanichenko V.N. Thermodynamic Inversion: Origin of Living Systems. Cham (Switzerland): Springer International Publishing; 2017. 275 p. DOI: 10.1007/978-3-319-53512-8.

Kralj P. Das Thermalwasser-System des Mur-Beckens in Nordost-Slowenien // Mitteilungen zur Ingenieurgeologie und Hydrogeologie. 2001. Vol. 81. P. 1–82.

Kralj Pt.; Kralj P. Thermal and mineral waters in north-eastern Slovenia // Environmental Earth Sciences. 2000. Vol. 39; N 5. P. 488–500. DOI: 10.1007/s002540050455.

Mulkidjanian A.Y.; Bychkov A.Yu.; Dibrova D.V.; Galperin M.Y.; Koonin E.V. Origin of first cells at terrestrial; anoxic geothermal fields // Proceedings of the National Academy of Sciences of the United States of America. 2012. Vol. 109 (14). P. E821–E830. DOI: 10.1073/pnas.1117774109.

Nicolis G. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations; 1st Edition / G. Nicolis; I. Prigogine. New York: Wiley; 1977. 512 p.

Onsager L. Reciprocal relations in irreversible processes. II // Physical Review. 1931. Vol. 38 (12). P. 2265–2279. DOI: 10.1103/physrev.38.2265.

Pace N.R. Origin of life - facing up to the physical setting // Cell. 1991. Vol. 65 (4). P. 531–533. DOI: 10.1016/0092-8674(91)90082-a.

Prigogine I. Order out of chaos: Man’s New Dialogue with Nature / I. Prigogine; I. Stengers. Toronto; New York; London; Sydney: Bantam Books; 1984. 349 p.

Russell M.J.; Hall A.J.; Boyce A.J.; Fallick A.E. 100th anniversary special paper: > on hydrothermal convection and the emergence of life // Economic Geology. 2005. Vol. 100; N 3. P. 419–438. DOI: 10.2113/gsecongeo.100.3.419.

Stefansson V. The Krafla geothermal field; North-East Iceland // Geothermal Systems: Principles and Case Histories. New York: Wiley and Sons; 1981. P. 273–294.

Washington J. The Possible Role of Volcanic Aquifers in Prebiotic Genesis of Organic Compounds and RNA // Origins of life and evolution of the biosphere. 2000. Vol. 30 (1). P. 53–79. DOI: 10.1023/A:1006692606492.

REFERENS:

Avchenko O.V. Osnovy fiziko-khimicheskogo modelirovaniya mineral’nykh system (Fundamentals of Physicochemical Modeling of Mineral Systems), O.V. Avchenko, K.V. Chudnenko, I.A. Aleksandrov. Moscow: Nauka Publ., 2009. 229 p. (In Russ).

Avchenko O.V., Chudnenko K.V., Aleksandrov I.A., Khudolozhkin V.O. Adaptation of the SELECTOR-C program package for solving petrogenetic problems of metamorphic rocks. Geochemistry international, 2011, no. 2, pp. 149–164. (In Russ).

Kiryukhin A.V., Lesnykh M.D., Polyakov A.Yu. The natural hydrodynamic regime of the Mutnovsky geothermal reservoir and its connection with seismic activity. Vulkanologiya i Seismologiya, 2002, no. 1, pp. 51–60. (In Russ).

Kompanichenko V.N. Stages of transition from precellular organic microsystems to primary prokaryotic communities. Izvestiya RAN. Seriya biologicheskaya, 2011, no. 5, pp. 630–640. (In Russ).

Kompanichenko V.N., Avchenko O.V. Thermo-dynamic calculations of the parameters of hydrothermal environment in the modeling of biosphere origin. Regional’nye problemy, 2015, vol. 18, no. 2, pp. 5–13. (In Russ).

Kompanichenko V.N., Shlyufman K.V. Ampli-tude-frequency characteristic of pressure fluctuations of the steam-water mixture in the Verkhne-Mutnovskaya hydrothermal system. Vulkanologiya i Seismologiya, 2013, no. 5, pp. 51–58. (In Russ). DOI: 10.7868/S0203030613050027.

Chudnenko K.V. Termodinamicheskoe modelirovanie v geokhimii: teoriya, algoritmy, programmnoe obespechenie, prilozheniya (Thermodynamic modeling in geochemistry: theory, algorithms, software, applications). Novosibirsk: Geo Publ., 2010. 287 p. (In Russ).

Baaske P., Weinert F.M., Duhr S., Lemke K.H., Russell M.J., Braun D. Extreme accumulation of nucleotides in simulated hydrothermal pore systems. Proceedings of the National Academy of Sciences, 2007, vol. 104, no. 22, pp. 9346–9351. DOI: 10.1073/pnas.0609592104.

Brown K.M., Tryon M.D., DeShon H.R., Dorman L.M., Schwartz S.Y. Correlated transient fluid pulsing and seismic tremor in the Costa Rica subduction zone. Earth and Planetary Science Letters, 2005, vol. 238, no. 1–2, pp. 189–203.

Budin I., Szostak J.W. Expanding roles for diverse physical phenomena during the origin of life. Annu Rev Biophys, 2010, vol. 39, pp. 245–263.

Corliss J.B., Baross J.A., Hoffman S.E. An hypothesis concerning the relationship between submarine hot springs and the origin of life on the Earth. Oceanological Acta, 1981, no. 4, pp. 59–69.

Deamer D.W. Combinatorial chemistry in the prebiotic environment. Journal of Biomolecular Structure and Dynamics, 2013, no. 31, suppl. 1, pp. 9. DOI: 10.1080/07391102.2013.786323.

Deamer D.W. First Life: Discovering the Connections between Stars, Cells, and How Life Began. Berkeley (California): University of California Press, 2011. 272 p.

Ebeling W. Physik der Evolutionsprozesse, W. Ebeling, A. Engel, R. Feistel. Berlin: Akademie-Verlag, 1990. 371 p.

Feistel R. Physics of Self-Organization and Evolution, R. Feistel, W. Ebeling. Weinheim, Germany: Wiley-VCH Verlag & Co. KGaA, 2011. 576 p.

Haken H. Synergetics. An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Berlin Heidelberg: Springer-Verlag, 1978. 358 p. DOI: 10.1007/978-3-642-96469-5.

Holland T.J.B., Powell R. An internally consistent thermodynamic data set for phases of petrological interest. Journal of Metamorphic Geology, 1998, vol. 16, no. 3, pp. 309–343. DOI: 10.1111/j.1525-1314.1998.00140.x.

Holm N.G., Andersson E. Hydrothermal simulation experiments as a tool for studies for the origin of life on Earth and other terrestrial planets: a review. Astrobiology, 2005, vol. 5, no. 4, pp. 444–460. DOI: 10.1089/ast.2005.5.444.

Knauth L.P., Lowe D.R. High Archaean climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geological Society America Bulletin, 2003, vol. 115, no. 5, pp. 566–580. DOI: 10.1130/0016-7606(2003)115<0566:HACTIF>2.0.CO;2.

Kompanichenko V., Kotsyurbenko O. Role of Stress in the Origin of Life. Life, 2022, vol. 12, no. 11, 1930. DOI: 10.3390/life12111930.

Kompanichenko V.N., Poturay V.A., Shlufman K.V. Hydrothermal systems of Kamchatka are Models of the Prebiotic Environment. Origin of Life and Evolution of Biospheres, 2015, vol. 45, no. 1–2, pp. 93–103. DOI: 10.1007/s11084-015-9429-2.

Kompanichenko V.N. Inversion Concept of the Origin of Life. Origins of Life and Evolution of Biospheres, 2012, vol. 42, pp. 153–178.

Kompanichenko V.N. Thermodynamic Inversion: Origin of Living Systems. Cham (Switzerland): Springer International Publishing, 2017. 275 p. DOI: 10.1007/978-3-319-53512-8.

Kralj P. Das Thermalwasser-System des Mur-Beckens in Nordost-Slowenien. Mitteilungen zur Ingenieurgeologie und Hydrogeologie, 2001, vol. 81, pp. 1–82.

Kralj Pt., Kralj P. Thermal and mineral waters in north-eastern Slovenia. Environmental Earth Sciences, 2000, vol. 39, no. 5, pp. 488–500. DOI: 10.1007/s002540050455.

Mulkidjanian A.Y., Bychkov A.Yu., Dibrova D.V., Galperin M.Y., Koonin E.V. Origin of first cells at terrestrial, anoxic geothermal fields. Proceedings of the National Academy of Sciences of the United States of America, 2012, vol. 109 (14), pp. E821–E830. DOI: 10.1073/pnas.1117774109.

Nicolis G. Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order through Fluctuations, 1st Edition, G. Nicolis, I. Prigogine. New York: Wiley, 1977. 512 p.

Onsager L. Reciprocal relations in irreversible processes. II. Physical Review, 1931, vol. 38 (12), pp. 2265–2279. DOI: 10.1103/physrev.38.2265.

Pace N.R. Origin of life - facing up to the physical setting. Cell, 1991, vol. 65 (4), pp. 531–533. DOI: 10.1016/0092-8674(91)90082-a.

Prigogine I. Order out of chaos: Man’s New Dialogue with Nature, I. Prigogine, I. Stengers. Toronto; New York; London; Sydney: Bantam Books, 1984. 349 p.

Russell M.J., Hall A.J., Boyce A.J., Fallick A.E. 100th anniversary special paper: > on hydrothermal convection and the emergence of life. Economic Geology, 2005, vol. 100, no. 3, pp. 419–438. DOI: 10.2113/gsecongeo.100.3.419.

Stefansson V. The Krafla geothermal field, North-East Iceland. Geothermal Systems: Principles and Case Histories. New York: Wiley and Sons, 1981, pp. 273–294.

Washington J. The Possible Role of Volcanic Aquifers in Prebiotic Genesis of Organic Compounds and RNA. Origins of life and evolution of the biosphere, 2000, vol. 30 (1), pp. 53–79. DOI: 10.1023/A:1006692606492.


Ссылки

  • Ссылки не определены.