MODELING THE DYNAMICS OF INTERACTING PREDATOR-PREY POPULATIONS WITH CONSTANT MIGRATION OF INDIVIDUALS FROM ADJACENT TERRITORIES
Аннотация
The article deals with the research of the dynamics of a local predator-prey community with constant migration of individuals from neighboring territories. We studied several models with a constant inflow of individuals into both predator and prey populations. It is shown that changes in the overall dynamics are significantly influenced by the number of predator migrants: their large influx leads to the rapid and almost complete extinction of preys. The model considering only a constant preyinflow is successfully applied to modeling of various processes based on the principles of predator-prey population interactions, for example, when studying the consumption of difficult-to-renewable or nonrenewable natural resources. The study of the model provides allows getting estimations of the resources use efficiency and and the degree of modernization of the consumer sector. It is shown that two-dimensional models - modifications of the basic Volterra and Bazykin models, lead to structurally stable fluctuation regimes corresponding to the focus and limit cycle. We found that these models also contain fast-slow periodic dynamics, corresponding to a maximum limit cycle with strong spikes and smoother declines in the population size. The emergence of such regimes corresponds to the alternation of periods of active extinctions of prey, accompanied by an increase in the number of predators, and periods of long-term restoration of the prey, during which there is no harvesting of prey. We usedmethods of dynamic systems analysis to study the models. The construction of two-dimensional parametric portraits shows that, to get stable dynamics of the basic models of two interacting biological species, no complication is required, for example, by adding nonlinear terms. Stable regimes are also observed in simpler models, such as the original Lotka-Volterra or Bazikin models, where the recovery rate of prey population is a constant value.
Ключевые слова
Литература
REFERENCE: Kurilova E.V., Frisman E.Ya. Modeling the dynamics of interacting predator-prey populations with constant migration of individuals from adjacent territories. Regional’nye problemy, 2024, vol. 27, no. 1, pp. 62–77. (In Russ.). DOI: 10.31433/2618-9593-2024-27-1-62-77.
Andronov A.A. Teoriya kolebanii (Theory of oscillations), A.A. Andronov, A.A. Vitt, S.E. Khaikin. Moscow: Fizmatgiz Publ., 1959. 915 p. (In Russ.).
Bakhanova Y.V., Kazakov A.O., Korotkov A.G. Spiral Chaos in Lotka-Volterra Like Models. Zhurnal srednevolzhskogo matematicheskogo obshchestva, 2017, vol. 19, no. 2, pp. 13–24. (In Russ.). DOI: 10.15507/2079-6900.19.201701.013-02.
Gauze G.F. Bor’ba za sushchestvovanie (Struggle for existence). Moscow; Izhevsk: In-t computer. Research, 2002. 160 p. (In Russ.).
Kolmogorov A.N. Qualitative study of mathematical models of population dynamics. Problemy kibernetiki, 1972, no. 5, pp. 100–106. (In Russ.).
Kulakov M.P., Kurilova E.V., Frisman E.Ya. Synchronization and Bursting Activity in the Model for Two Predator-Prey Systems Coupled By Predator Migration. Matematicheskaya biologiya i bioinformatika, 2019, vol. 14, no. 2, pp. 588–611. (In Russ.). DOI: 10.17537/2019.14.588.
Kurilova E.V., Kulakov M.P., Khavinson M.Yu., Frisman E.Ya. Modeling the dynamics of mineral resource extraction in the region: an economophysical approach. Informatika i sistemy upravleniya, 2012, vol. 34, no. 4, pp. 3–13. (In Russ.).
Kurilova E.V., Kulakov M.P., Frisman E.Ya. Modeling the dynamics of hard to renew resources consumption. Informatika i sistemy upravleniya, 2023, vol. 2, no.76, pp. 18–32. (In Russ.). DOI: 10.22250/18142400_2023_76_2_18.
Logofet D.O., Kazantseva E.S., Belova I.N., Onipchenko V.G. Local population of Eritrichium caucasicum as an object of mathematical modelling. II. How short does the short-lived perennial live? Zhurnal obshchei biologii, 2017, vol. 78, no. 1, pp. 56–66. (In Russ.).
Lyapunov A.M. Obshchaya zadacha ob ustoichivosti dvizheniya (The general problem of motion stability). Moscow; Leningrad: Gostekhizdat Publ., 1950. 472 p. (In Russ.).
Medvinsky A.B., Rusakov A.V., Nurieva N.I., Gonik M.M., Burmensky V.A., Kriksunov A.E., Bobyrev A.E. A Conceptual Mathematical Model of the Aquatic Communities of Lakes Naroch and Myastro (Belarus). Biofizika, 2009, vol. 54, no. 1, pp. 120–125. (In Russ.). DOI: 10.20537/2076-7633-2016-8-2-229-239.
Neymark Yu.I. On the emergence of stochasticity in dynamic systems. Izvestiya vuzov. Radiofizika, 1974, vol. 17, no. 4, pp. 602–607. (In Russ.).
Riznichenko G.Yu. Biofizicheskaya dinamika produktsionnykh protsessov (Biophysical dynamics of production processes), G.Yu. Riznichenko, A.B. Rubin. Moscow; Izhevsk: In-t computer. Research, 2004. 464 p. (In Russ.).
Rozenberg G.S. Vvedenie v teoreticheskuyu ekologiyu (Introduction to theoretical ecology), vol. 1. Tolyatti: Kassandra Publ., 2013. 565 p. (In Russ.).
Romanovsky Yu.M. Matematicheskoe modelirovanie v biofizike (Mathematical modeling in biophysics), Yu.M. Romanovsky, N.V. Stepanova, D.S. Chernavsky. Moscow: Nauka Publ., 1975. 343 p. (In Russ.).
Shapiro A.P. Rekurrentnye uravneniya v teorii populyatsionnoi biologii (Recurrent equations in the theory of population biology), A.P. Shapiro, S.P. Luppov. Moscow: Nauka Publ., 1983. 132 p. (In Russ.).
Bazykin A.D. Nonlinear dynamics of interacting populations. World scientific series on Nonlinear Science. Ser. A. Vol. 11. Singapure: World Scientific Publishing Co., 1998. 194 p. DOI: https://doi.org/10.1142/2284.
Cressman R., Křivan V. Migration Dynamics for the Ideal Free Distribution. The American Naturalist, 2006, vol. 168, no. 3, pp. 384–987. DOI: 10.1086/506954.
Holling C.S. Some characteristics of simple types of predation and parasitism. Canadian Entomologist, 1959, vol. 91, pp. 385–398. DOI: 10.4039/Ent91385-7.
Hubbert M.K. Nuclear energy and the fossil fuels. Texas: American Petroleum Inst, 1956. 40 p.
Křivan V., Eisner J. The effect of the Holling type II functional response on apparent competition. Theoretical Population Biology, 2006, vol. 70, pp. 421–430. DOI: 10.1016/j.tpb.2006.07.004.
Kurilova E.V., Kulakov M.P., Frisman E.Y. Mechanisms leading to bursting oscillations in the system of predator–prey communities coupled by migrations. Izvestiya Vysshikh Uchebnykh Zavedeniy. Applied Nonlinear Dynamics, 2023, vol. 31, no. 2, pp. 143–169. DOI: 10.18500/0869-6632-003030.
Logofet D.O. Estimating the fitness of a local discrete-structured population: from uncertainty to an exact number. Ecological Modelling, 2016, vol. 329, pp. 112–120. DOI: 10.1016/j.ecolmodel.2016.02.015.
Lotka A.J. Elements of physical biology. Baltimore: Williams and Wilkins, 1925. 495 p.
Manica V., Silva J.A.L. Population distribution and synchronized dynamics in a metapopulation model in two geographic scales. Mathematical Biosciences, 2014, vol. 250, pp. 1–9. DOI: 10.1016/j.mbs.2014.02.002.
Mukhopadhyay B., Bhattacharyya R. Role of predator switching in an eco-epidemiological model with disease in the prey. Ecological Modelling, 2009, vol. 220, no. 7, pp. 931–939. DOI: 10.1016/j.ecolmodel.2009.01.016.
Pati N.C., Ghosh B. Impacts of time delay in a bistable predator–prey system. Nonlinear Dynamics, 2023, vol. 111, pp. 22707–22726. DOI: 10.1007/s11071-023-08988-5.
Rosenzweig A., MacArthur R.H. Graphical representation and stability conditions of predator-prey interaction. Amer. Natur., 1963, vol. 97, pp. 209–223. DOI: 10.1086/282272.
Saha S., Bairagi N., Dana S.K. Chimera states in ecological network under weighted mean-field dispersal of species. Front. Appl. Math. Stat., 2019, vol. 5:15, pp. 1–11. DOI: 10.3389/fams.2019.00015.
Saifuddin Md., Biswas S., Samanta S., Sarkar S., Chattopadhyay J. Complex dynamics of an eco-epidemiological model with different competition coefficients and weak Allee in the predator. Chaos, Solitons & Fractals, 2016, vol. 91, pp. 270–285. DOI: 10.1016/j.chaos.2016.06.009.
Tyutyunov Yu.V., Titova L.I., Senina I.N. Prey-taxis destabilizes homogeneous stationary state in spatial Gause-Kolmogorov-type model for predator-prey system. Ecological Complexity, 2017, vol. 31, pp. 170–180. DOI: 10.1016/j.ecocom.2017.07.001.
Volterra V. Lecons sur la Theorie Mathematique de la Lutte pour la Vie. Paris: Gauthier – Villars, 1931. 214 p.
Ссылки
- Ссылки не определены.