G.V. Sokolova


The Amur is navigable along its entire length, and it has a great transport importance for the Far East region. In years with spring-summer-autumn periods of low water level, the Amur River navigation suffers great economic losses. In such years, the volume of cargo transportation and the movement of passenger ships are disrupted, the work of water intakes deteriorates, and water supply to the population and enterprises is hampered. In the Khabarovsk Territory, material damage is sometimes commensurate with the damage from floods. More than a century of observations of the Amur regime near Khabarovsk made it possible to carry out a statistical analysis of the characteristic water level dynamics in three water phases: spring flood, summer low-water period and rain floods. The territory climate with cold dry winters and warm humid summers determines a dual maximum runoff in the Amur regime, reduced in spring and high in summer. It is noteworthy that both maximum runoffs have a steady downward trend in the dynamics of the highest water levels for 1896–2021. However, the height of the spring flood wave, in contrast to the annual maximums, decreases in dynamics more intensively (at a rate of 10–12 cm / 10 years and 5–7 cm / 10 years, respectively). The lowest water levels observed after the flood wave (summer low water period) have a long-term trend in dynamics, parallel to the spring trend. A similar trend in the Amur regime is associated with the variability of the regional climate and is synchronous with global warming characterized by an increase in surface air temperature, which contributes to an increase in evaporation from the water surface, and therefore, to a decrease in river runoff. The performed assessment of the Amur water regime during the navigation period makes it possible, by means of   trend components, to orient the hydrologist-forecaster on the distribution of the Amur water content in in the coming season.   

Ключевые слова

Amur River; spring maximum; summer low water; annual maximum; forecast estimation


Ageeva S.V., Bobrikova I.V., Verbitskaya E.M., Efremova N.F., Romanskiy S.O. The 2013 Amur River Catastrophic Flood: Causes and Features, in Vodnye i ekologicheskie problemy, preobrazovanie ekosistem v usloviyakh global’nogo izmeneniya klimata: Vseros. konf. V Druzhininskie chteniya: sb. dokl. (Water and Ecological Problems, Ecosystems Transformations under the Global Climate Change). Khabarovsk, IVEP FEB RAS, 2014, pp. 18–21. (In Russ.).

Amur. Vikipediya. Available at:Амур (accessed: 24.02.2022). (In Russ.).

Belkin I.M. Impact of Ocean Acidification on Marine Fisheries of Russia (an Analytical Review). Rybnoe khozyaistvo, 2017, no. 3, pp. 21–32. (In Russ.).

Bolgov M.V., Korobkina E.A., Osipova N.V., Filippova I.A. The Analysis of Long-Term Variability and Estimation of the Maximum Water Levels Under Conditions of High Anthropogenic Impact for the Amur River. Meteorologiya i gidrologiya, 2016, no. 8, pp. 80–89. (In Russ.).

Bolgov M.V., Trubeckova M.D., Filippova I.A. Modern Changes in Climatic Characteristics in the Amur Basin, in Nauchnoe obespechenie realizatsii «Vodnoi strategii Rossiiskoi Federatsii na period do 2020 goda»: sb. tr. Vseros. nauch. konf. (Scientific support for the implementation of the «Water Strategy of the Russian Federation for the period up to 2020»). Petrozavodsk: KarRC RAS, 2015, vol. 1, pp. 87–93. (In Russ.).

Bortin N.N., Milayev V.M. Examination of the Long-Term Dynamics and the Scheme of Super-Longterm Forecast for Inundation on the Amur River. Vodnoe khozyaistvo Rossii: problemy, tekhnologii, upravlenie, 2014, no. 4, pp. 45–59. (In Russ.).

Georgievskii Y.M., Koronkevich N.I., Alekseevskii N.I. Water resources and the hydrological regime of the rivers of the Russian Federation in the conditions of climate change, in Plenarnye doklady VII Vseros. gidrologicheskogo s”ezda (Plenary reports VII Vsros. hydrological congress). St. Petersburg: GGI, 2014, pp. 79–102. (In Russ.).

Gosudarstvennyi vodnyi kadastr. Razd. 1. Poverkhnostnye vody. Ser. 2. Ezhegodnye dannye o rezhime i resursakh poverkhnostnykh vod sushi. 1979 g. Ch. 1. Reki i kanaly. Ch. 2. Ozera i vodokhranilishcha. T. 9. Vyp. 0-5. (Bassein reki Amur) (State Water Cadastre. Section 1. Surface waters. Series 2. Annual data on the regime and resources of land surface waters. 1979 Part 1. Rivers and canals. Part 2. Lakes and reservoirs. Vol. 9. Issue 0-5. (Amur River basin)). Obninsk: VNIIGMI-MCD, 1981. (In Russ.).

Gusev E.M., Nasonova O.N., Kovalev E.N., Aizel G.V. Possible Climate Change Impact on River Runoff in the Different Regions of the Globe. Meteorologiya i gidrologiya, 2018, no. 6, pp. 77–86. (In Russ.).

Interactive map of hydrological information. FGBU «Dal’nevostochnoe UGMS». Available at: (accessed: 24.02.2022). (In Russ.).

Kalugin A.S. The Amur River flow formation model and its application to assess possible changes in the water regime. Dissertation of cand. (geogr.). Moscow: IVP RAS, 2016. 184 p. (In Russ.).

Kattsov V.M., Govorkova V.A. Expected Surface Air Temperature, Precipitation and Annual Runoff Changes over the Territory of Russia: Projections with an Ensemble of Global Climate Models (Cmip5). Trudy GGO, 2013, no. 569, pp. 75–97. (In Russ.).

Kotsyuk D. Amur is one of the largest rivers in the world with a unique ichthyofauna. Zvezda Priamur’ya. 2017, no. 4, pp. 9–12. (In Russ.).

Mokhov I.I., Khon V.Ch., Timazhev A.V., Chernokul’skii A.V., Semenov V.A. Hydrological anomalies and trends in the Amur River basin due to climatic changes, in Ekstremal’nye pavodki v basseine r. Amur: prichiny, prognozy, rekomendatsii: sb. dokl (Extreme floods in the Amur River basin: causes, forecasts, recommendations). Moscow: Rosgidromet Publ., 2014, pp. 81–120. (In Russ.).

Mezhen’. Vikipediya. Available at:Межень (accessed: 24.02.2022). (In Russ.).

Model’ talo-dozhdevogo stoka HEC-HMS (Jonction «G_DarRiver_Darivill» Resultse for Run «Event 1996». Available at: (accessed: 24.02.2022). (In Russ.).

Nezhikhovsky R.A. Ruslovaya set’ basseina i protsess formirovaniya stoka vody (metodicheskie osnovy i praktika prognozov pavodochnogo stoka rek) (Riverbed network of the basin and the process of formation of water flow (methodological foundations and practice of forecasts of flood flow of rivers)). Leningrad: Gidrometeoizdat Publ., 1971. 476 p. (In Russ.).

Novorotskii P.V. Climate Changes in the Amur River Basin in the Last 115 Years. Meteorologiya i gidrologiya, 2007, no. 2, pp. 43–53. (In Russ.).

Pryamitsyn V.N. Decisions of the USSR State Defense Committee in the Field of Hydrometeorology (1941–1945). Meteorologiya i gidrologiya, 2018, no. 5, pp. 113–115. (In Russ.).

Resursy poverkhnostnykh vod SSSR. T. 18. Dal’nii Vostok. Vyp. 1. Verkhnii i Srednii Amur (Surface water resources of the USSR. Vol. 18. Far East. Issue 1. Upper and Middle Amur). Leningrad: Gidrometeoizdat Publ., 1966. 781 p. (In Russ.).

Resursy poverkhnostnykh vod SSSR. T. 18. Dal’nii Vostok. Vyp. 2. Nizhnii Amur (Surface water resources of the USSR. Vol. 18. Far East. Vol. 2. Nizhny Amur). Leningrad: Gidrometeoizdat Publ., 1970. 592 p. (In Russ.).

Rukovodstvo po gidrologicheskim prognozam. Vyp. 2. Dolgosrochnye prognozy elementov vodnogo rezhima rek i vodokhranilishch (Guide to hydrological forecasts. Issue 2. Long-term forecasts of elements of the water regime of rivers and reservoirs). Leningrad: Gidrometeoizdat Publ., 1989. 247 p. (In Russ.).

Samye dlinnye reki planet. Blog Inima. Available at: (accessed: 24.02.2022). (In Russ.).

Sokolova G.V. Towards the development of a long-term agro-climatic forecast of crop hazards (on the example of the Far East). Mezhdunarodnyi sel’skokhozyaistvennyi zhurnal, 2016, no. 6, pp. 48–53. (In Russ.).

Sokolova G.V. The assumed scenario of local climatic changes and their consequences for the Amur, in Prirodnye resursy i ekologiya dal’nevostochnogo regiona: materialy II mezhdunar. foruma (Natural resources and ecology of the Far Eastern region: materials of the II International. forum). Khabarovsk: PNU, 2017, no. 2, pp. 63–68. (In Russ.).

Sokolova G.V. Teteryatnikova Ekaterina Panfilovna, in Otechestvennye gidrologi XX v. Istoriko-biograficheskoe opisanie: monografiya, pod red. D.E. Klimenko (Domestic hydrologists of the XX century. Historical and biographical description: monograph), Klimenko D.E., Ed. Yekaterinburg: Ural’skii rabochii Publ., 2018, pp. 746–748. (In Russ.).

Sokolova G.V., Teteryatnikova E.P. Problemy dolgosrochnogo prognozirovaniya pozharnoi opasnosti v lesakh Khabarovskogo kraya i Evreiskoi avtonomnoi oblasti po meteorologicheskim usloviyam (Problems of long-term forecasting of fire danger in the forests of the Khabarovsk Territory and the Jewish Autonomous Region by meteorological conditions). Khabarovsk: FEB RAS, 2008. 150 p. (In Russ.).

Reference materials. 20 largest river basins in the world (with an area of more than 1 million km2). Geografiya, 2003, no. 37. Available at: (accessed: 24.02.2022). (In Russ.).

Teteryatnikova E.P. Problemy dolgosrochnykh gidrologicheskikh prognozov v basseine Amura na osnove ucheta aerosinopticheskikh materialov (Problems of long-term hydrological forecasts in the Amur basin based on aerosynoptic materials). Leningrad: Gidrometeoizdat Publ., 1985. 104 p. (In Russ.).

Tukey John. Analiz rezul’tatov nabljudenij. Razvedochnyj analiz: per. s angl. (Exploratory data analysis). Moscow: Mir Publ., 1981. 692 p. (In Russ.).

Uprazhnenija i metodicheskie razrabotki po gidrologicheskim prognozam, sost. N.F. Befani, G.P. Kalinin (Exercises and methodological developments on hydrological forecasts), Befani N.F., Kalinin G.P., comp. Leningrad: Gidrometeoizdat Publ., 1965. 439 p. (In Russ.).

Frolov A.V., Georgievskii V.Y. Changes in Water Resources Under Conditions of Climate Warming and Their Impact on Water Inflow to Russian Large Reservoirs. Meteorologiya i gidrologiya. 2018, no. 6, pp. 67–76. (In Russ.).

State of emergency Khabarovsk Territory. Flood of 2013. Forum Habarovska. Available at: (accessed: 24.02.2022). (In Russ.).

Forootan E., Schumacher M., Mehrnegar N., Bezděk A., Talpe M.J., Farzaneh S., Zhang C., Zhang Y., Shum C.K. An Iterative ICA-Based Reconstruction Method to Produce Consistent Time-Variable Total Water Storage Fields Using GRACE and Swarm Satellite Data. Remote Sensing, 2020, vol. 12, no. 10. 1639.

Masuda K., Hashimoto Y., Matsuyama H., Oki T. Seasonal cycle of water storage in major river basins of the world. Geophysical Research Letters, 2021, vol. 28, no. 16, pp. 3215–3218. DOI: 10.1029/2000GL012444.

Ogi M., Tachibana Y. Influence of the annual Artic Oscillation on the negative correlation between Okhotsk Sea ice and Amur River discharge. Geophysical Research Letters, 2006, vol. 33, no. 8, L08709. DOI: 10.1029/2006GL025838.

Semenov E.K., Sokolikhina N.N., Tatarinovich E.V. Monsoon circulation over the Amur basin during periods of catastrophic flooding and an abnormally dry summer season. Russian meteorology and hydrology, 2017, vol. 42, no. 3, pp. 141–149.

Shilun Z., Wanchang Z. Calibration and validation of a semi-distributed hydrological model in the Amur River Basin using remote sensing data. Proc. SPIE Vol. 10421, Remote Sensing for Agriculture, Ecosystems, and Hydrology XIX. 2017. 1042104

Sokolova G.V. Analysis of the Amur water regime for the period before the catastrophic flood in 2013. Russian meteorology and hydrology, 2015, vol. 40, no. 7, pp. 477–479.

Tachibana Y., Oshima K., Ogi M. Seasonal and interannual variations of Amur River discharge and their relationships to large-scale atmospheric patterns and moisture fluxes. Journal of Geophysical Research Atmospheres, 2008, vol. 113, D16102. DOI: 10.1029/2007JD009555.

Wieland H., Daronja T., Sokolova G.V., Tamaki K. Increased Populations of Endangered Cranes after Amur River Flood. Waterbirds, 2017, vol. 40, no. 3, pp. 282–288.


  • Ссылки не определены.