WATER ECOSYSTEMS STATE AND PRODUCTIVITY. MATHEMATICAL MODELING

A.I. Abakumov, S.Ya. Pak

Аннотация


In  the paper, it is considered  phytoplankton distribution on the Sea of Okhotsk West Kamchatka shelf. The researchers compare phytoplankton in spring-summer-autumn seasons of warm 2015 and cold 2016. They apply mathematical models  to estimate the phytoplankton abundance in the water column. Satellite measurements of a sea surface are used as initial or as left boundary condition for solving a system of equations in a mathematical model. Depth illumination is calculated by differential equation.


Ключевые слова


mathematical model; sea area; phytoplankton; chlorophyll; nutrient; illumination; temperature; depth.

Литература


Avramenko A.S., Cherepanova M.V., Pushkar’ V.S., Yarusova S.B. Diatom Characteristics of the Far East Siliceous Organogenic Deposits. Geologiya i geofizika, 2015, vol. 56, no. 6, pp. 1206–1220. (In Russ.).

Beckmann A., Schaum C.-E., Hense I. Phytoplankton adaptation in ecosystem models. J. Theor. Biol, 2019, no. 468, pp. 60–71.

Sekerci Y. Adaptation of species as response to climate change: predator-prey mathematical model. AIMS Mathematics. 2020, no. 5 (4), pp. 3875–3898. DOI: 10.3934/math.2020251

Sunda W.G. Feedback Interactions between Trace Metal Nutrients and Phytoplankton in the Ocean. Frontiers in Microbiology, 2012, no. 3, pp. 204. DOI: 10.3389/fmicb.2012.00204.


Ссылки

  • Ссылки не определены.